Einführung ePatientendossier: Anbinden von Primärsystemen

Umsetzungshilfe für Hersteller von Primärsystemen und ihre Kunden

Vom Projektleitungsgremium zur Kenntnis genommen

Bern, 18. September 2017, Version 1.1
(Aktualisierung der Version 1.0 vom 13. September 2016)
Impressum
© Koordinationsorgan eHealth Bund-Kantone

Projektorganisation

Steuerungsausschuss: Alain Berset (Bundesrat, Vorsteher EDI); Pascal Strupler (Direktor BAG); Stefan Spycher (Vizedirektor BAG); Oliver Peters (Vizedirektor BAG); Guido Graf (Regierungsrat, Vorsteher GD LU); Heidi Hanselmann (Regierungsrätin, Vorsteherin GD SG); Susanne Hochuli (Regierungsrätin, Vorsteherin GD AG); Mauro Poggia (Regierungsrat, Vorsteher GD GE).

Projektleitungsgremium: Adrian Schmid („eHealth Suisse“, Vorsitz); Lotte Arnold (SPO); Susanna Bürki Sabbioni (SVBG); Reinhold Sojer (BAG); Adrian Jaggi (santésuisse); Hansjörg Looser (GD SG); Daniel Notter (pharmaSuisse); Caroline Piana (H+); Georg Schielke (GDK); Walter Stüdeili (IG eHealth); Salome von Greyerz (BAG); Judith Wagner (FMH).

Geschäftsstelle eHealth Bund-Kantone: Adrian Schmid (Leitung), Sang-Il Kim, Catherine Bugmann, Johannes Gnägi, Stefan Wyss, Isabelle Hofmänner

Teilprojekt Standards und Architektur: Hansjörg Looser (Kanton St.Gallen / Co-Leitung), Christian Lovis (H+ / Co-Leitung), Judith Wagner (FMH / Co-Leitung), Walid Ahmed (BAG), Peter Amherd (VSFM), Esther Bättig (Spitex), Annelies Baumann (SVBG), Pierre-Yves Baumann (EDöB), Susanna Bürki Sabbioni (SVBG), Jean-Bernard Cichocki (OFAC), Herbert Felber (H+), Gregor Ineichen (santésuisse), Ralf Kulik (HIN), Claudine Leuthold (pharmaSuisse), Thomas Marko (IG eHealth), Thomas Meier (EDöB), Henning Müller (Fachhochschule Westschweiz), Willy Müller (ISB), Marc Oertle (H+), Daniel Ratschiller (H+), Martin Rüfenacht (IG eHealth), Tony Schallier (HL7 / IHE Suisse), Matthias Sonnenschein (Refdata), Jost Tödtli (IG eHealth), Salome von Greyerz (BAG), Barbara Widmer (privatim), Christoph Winkler (IG eHealth), Urs Zellweger (santésuisse), Michael Ziegler (IG eHealth)

Autorenteam:
Peter Amherd, Oliver Egger, Reto Mettler, Kathrin Fischer, Martin Smock

Lizenz: Dieses Ergebnis gehört „eHealth Suisse“ (Koordinationsorgan eHealth Bund-Kantone). Das Schlussergebnis wird unter der Creative Commons Lizenz vom Typ „Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 Lizenz“ über geeignete Informationskanäle veröffentlicht. Lizenztext: http://creativecommons.org/licenses/by-sa/4.0

Weitere Informationen und Bezugsquelle: www.e-health-suisse.ch

Identifikation dieses Dokuments
OID: 2.16.756.5.30.1.127.1.3.1.1.1
Zweck und Positionierung dieses Dokuments

Inhaltsverzeichnis

1 Einleitung ... 6

1.1 Ausgangslage und Motivation ... 7

1.2 Status und Zweck des Dokuments ... 7

1.3 Angesprochene Leserschaft ... 7

1.4 Zielsetzung ... 7

1.5 Projektteam ... 8

1.6 Abgrenzung ... 8

1.7 Anwendungsfälle ... 8

2 Vorgehen ... 9

2.1 Übersicht ... 9

2.2 Methodik .. 12

3 System-Gesamtarchitektur .. 14

3.1 Erklärung der «Landkarte» .. 14

3.2 Rahmenbedingungen ... 16

3.3 Welche Teilabschnitte aus der Verordnung betreffen die Hersteller von Primärsystemen ... 20

3.4 Welche Wege für den «Verkehr» sind vorhanden/erkennbar - und müssen begangen werden ... 21

4 Anwendungsfälle ... 23

4.1 Sichere Identifikation/ - Authentifizierung .. 26

4.2 Patientenregistrierung im EPD mit dem Primärsystem 28

4.3 Demographische Patientensuche ... 31

4.4 Dokumentenzugriff ... 32

4.4.1 Dokumentenübersicht ... 32

4.4.2 Notfallszenario .. 34

4.4.3 Dokumenten Download ... 35

4.4.4 Bildzugriff im EPD (DICOM) ... 37

4.5 Dokumentenpublikation ... 38

4.6 Suche und Rechte-Delegation (Ermächtigung) von Gesundheitsfachpersonen ... 40

4.7 Aktualisierung der gültigen EPD-Metadaten ... 42

5 Lösungsansätze für Anbindung an EPD-Infrastruktur 43

5.1 Mögliche Vorgehensweisen für die Hersteller von Primärsystemen 43

5.2 Native Implementierung, direkt mit IHE .. 43
5.2.1 Technisches Framework (IHE) ... 43
5.2.2 Implementation Material (IHE) ... 44
5.2.3 Test-Werkzeuge (IHE und andere) ... 44
5.3 eHealth Connector ... 45
5.3.1 eHealth Connector Software .. 46
6 Lösungsansätze für visuelle EPD-Integration ... 49
 6.1 Backend-Integration ... 49
 6.2 Frontend-Integration ... 49
 6.3 Web-Portal Aufruf ... 50
7 Welche Fragen sollten sich Hersteller von Primärsystemen stellen und Antworten dazu finden? ... 51
 7.1 Generelle, grundsätzliche Fragen .. 51
 7.2 Technologisch .. 51
 7.3 Betriebswirtschaftlich ... 51
 7.4 Organisatorisch .. 52
8 Handlungsempfehlungen ... 53
 8.1 Aktive Auseinandersetzung mit dem Thema .. 53
 8.2 Ausbildung innerhalb der Firmen / innerhalb der Branchengruppierungen 53
 8.2.1 Für die Anwender ... 54
 8.2.2 Branchengruppierungen .. 54
9 Kontakte, Quellen, Anlaufstellen ... 55
10 Literatur .. 56
11 Abkürzungen .. 58
 11.1 Abbildungsverzeichnis ... 60
 11.2 Tabellenverzeichnis ... 60
1 Einleitung

1.1 Ausgangslage und Motivation

Hinweis: mit Anwenderschaft sind nicht nur die End-Anwender gemeint, sondern vor allem auch die Entscheidträger/Beschaffer bei den Gesundheitseinrichtungen.

Die Software-Industrie ist willens die Umsetzung und Einführung sicherzustellen. Wie benutzerfreundlich, wie sicher und wie nutzenstiftend die Sicht auf die Inhalte des Dossiers zur Verfügung stehen wird, hängt von vielen Faktoren ab. Die Akzeptanz der Anwenderschaft wird mit gut integrierten IT-Systemen und einfach zu bedienenden Applikationen steigen. Umgekehrt könnte das Nutzenpotential bei ungenügender Integration oder schlechter Bedienoberfläche ungenügend ausgeschöpft werden. Den Strategieorganen innerhalb der Unternehmungen (Anwender wie Hersteller) empfiehlt das Projektteam, sich rechtzeitig mit den Themen rund um das EPD zu befassen und früh die Weichen für den Entwicklungsweg individuell zu stellen. „eHealth Suisse“ hat das Projektteam damit beauftragt, eine «Umsetzungshilfe für die Anbindung der Primärsysteme an die EPD-Infrastruktur» zu erarbeiten, damit die Entscheidungsträger und die leitenden Organe in den Unternehmungen über eine Grundlage für das Vorantreiben der Entscheidungsfindung verfügen.

1.2 Status und Zweck des Dokuments

1.3 Angesporene Leserschaft

Das vorliegende Dokument richtet sich primär an Hersteller und Lieferanten von Primärsystemen, an die Anwender, sowie alle Gesundheitsfachpersonen, welche sich mit vorliegendem Thema befassen.

1.4 Zielsetzung

1.5 Projektteam

Tabelle 1: Übersicht Projektteam

<table>
<thead>
<tr>
<th>Funktion im Projekt</th>
<th>Unternehmung</th>
<th>Vertreten durch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragnehmer</td>
<td>ahdis gmbh c/o The Hub Zürich Association Sihlquai 131 8005 Zürich</td>
<td>Oliver Egger, Inhaber</td>
</tr>
<tr>
<td>Projektleitung / Autor</td>
<td>AMHERD & PARTNER Beratung, Entwicklung, Training Burgstrasse 34 8545 Rickenbach Sulz</td>
<td>Peter Amherd, Inhaber</td>
</tr>
<tr>
<td>Autor</td>
<td>ahdis gmbh c/o The Hub Zürich Association Sihlquai 131 8005 Zürich</td>
<td>Oliver Egger, Inhaber</td>
</tr>
<tr>
<td>Autor</td>
<td>ASPARAGUS ENGINEERING AG Mooswiesen 1 8416 Flaach</td>
<td>Reto Mettler, Inhaber</td>
</tr>
<tr>
<td>Autor</td>
<td>POST CH AG Wankdorfalle 4 3030 Bern</td>
<td>Kathrin Fischer, Business Analystin</td>
</tr>
<tr>
<td>Autor</td>
<td>Swisscom Health AG Neugasse 18 8005 Zürich</td>
<td>Dr. Martin Smock, Bereichsleiter Application & Development</td>
</tr>
</tbody>
</table>

1.6 Abgrenzung

Die Inhalte dieses Dokuments beantworten grundsätzlich keine Detail-Fragen zum «WIE». Wie die konkrete Integration realisiert wird, ist nicht Gegenstand dieser Umsetzungshilfe. Der Inhalt dieser Arbeit zeigt vielmehr die heute verfügbaren Mittel und mögliche Wege auf. Das Projektteam hat sich primär mit dem «WAS» (welche Alternativszenarien gibt es?) befasst.

1.7 Anwendungsfälle

2 Vorgehen

2.1 Übersicht

Ergänzend zum «Gesamtbild» wurde in der Gruppe eine gewisse „Kategorisierung“ der gängigen Schnittstellen erstellt, damit auch bezüglich der Verbindungen der Systeme untereinander eine übereinstimmende Sicht zugrunde lag.

Die beiden folgenden Bilder können innerhalb der Unternehmungen (Anwender und Hersteller von Primärsystemen) im Rahmen von Diskussionen und Entscheidungsfunden genutzt werden.
Abbildung 1: Landkarte EPD (auch als separates Dokument verfügbar)
Abbildung 2: Kategorien der Schnittstellen zu Primärsystemen (auch als separates Dokument verfügbar)
2.2 Methodik

Abbildung 3: Übersicht Vorgehen (auch als separates Dokument verfügbar)

Um die wesentlichen Bedürfnisse zu identifizieren und fundierte Hinweise formulieren zu können, wurde die Projektarbeit in einem allfälligen Vorgehen organisiert. Die jeweiligen Schritte sind in Kapitel 3.2 [Methodik] erläutert.
3 System-Gesamtarchitektur

In den Gesprächen mit einzelnen Vertretern der Software-Hersteller-Branche hat sich gezeigt, dass generell auf der einen Seite noch diverse Fragen im System offen sind, dass aber auf der anderen Seite auch bei den Zielgruppen teilweise ein sehr unterschiedlicher Wissenstand vorhanden ist. Es werden Begriffe unterschiedlich verwendet und unterschiedlich verstanden. Themengebiete werden teilweise aus mangelnder Übersicht und Kenntnis miteinander verflochten.

Die EPD Landkarte (Abbildung 1) stellt grundsätzlich zwei Themenbereiche dar.

3.1 Erklärung der «Landkarte»

Beim Themenbereich 1 geht es um den «bilateralen Datenaustausch». Innerhalb der Systeme sind Schnittstellen vorhanden z. B. für …

… die Verbindung zu den unterschiedlichsten «Aussenstellen» (z. B. Intermediäre, Lieferanten, Banken, Abrechnungs-Dienstleister, Datentransporteure usw.). Hierbei handelt es sich um die Schnittstellen-Kategorie 2.

Die Schnittstellen werden in Kategorien eingeteilt (siehe Abbildung 2), damit in den Gesprächen klar wird, von was respektive von welchen Anwendungsfällen gesprochen wird. Die Stakeholder haben sich in der Vergangenheit, und sie tun es heute und sie werden es künftig tun, miteinander verbunden. All diese Verbindungen hat die Arbeitsgruppe im linken Teil der Grafik unter der Bezeichnung «bilateraler Daten-/Informationsaustausch» dargestellt. Diese Verbindungen haben nichts mit dem Themenbereich 2 zu tun.
Beim Themenbereich 2 dreht sich alles um die «Anbindung der Primärsysteme an das EPD». In diesem Zusammenhang wird von der «Schnittstellen-Kategorie 5» gesprochen.

Die Hersteller von Primärsystemen (Software-Lösungen für ihre Zielgruppen) liefern ihren Kunden (Anwender) die Systeme (Anwendung). Die Systeme/Anwendungen müssen die Fähigkeit haben, sich mit dem EPD verbinden zu können. Für die Verbindung, für den Zugang auf die «IHE-Autostrasse» (Abbildung 1, in der Mitte der Grafik), stehen verschiedene Anschlussmöglichkeiten zur Verfügung:

a) der Zugang via IHE Transaktionen
b) der Zugang über den eHealth Connector
c) weitere, wie zum Beispiel über eine API

Das EPD - das elektronische Patienten-Dossier - ist ein virtuelles «Gebilde». Der Inhalt des EPD eines Patienten setzt sich künftig aus allen zu seiner Person vorhandenen Dokumenten aus den verschiedenen EPD-(Stamm-)Gemeinschaften zusammen. Die Gesundheitsfachperson publiziert die von ihm verfassten Inhalte in diejenige Gemeinschaft, bei der er selber angeschlossen ist. Der Zugang erfolgt über die eigene Gemeinschaft – das System wird künftig die Inhalte so zusammentragen und anzeigen, wie es vom Patienten bestimmt und gewünscht ist. Im Zusammenhang mit den «Gemeinschaften» werden unterschiedliche Bezeichnungen, die alle korrekt sind, verwendet:

a) Gemeinschaft oder Stammgemeinschaft:
Zusammenschluss von Gesundheitsfachpersonen und -institutionen, welche für die Datenbearbeitung im elektronischen Patientendossier notwendige Informatikinfrastruktur gemeinsam nutzen.
b) Besonderheit Stammgemeinschaft: dieser Gemeinschaftstyp bietet dem Patienten zudem die Möglichkeit an, ein EPD zu eröffnen/zu schliessen und seine Zugriffsrechte über ein Patientenportal zu verwalten. Darüber hinaus müssen Stammgemeinschaften den Patienten die Möglichkeit geben, eigene Dokumente über das Patientenportal der Stammgemeinschaft zu erfassen.

3.2 Rahmenbedingungen
Für die Anbindung der Primärsysteme an das elektronische Patientendossier gibt es gesetzliche, organisatorische sowie technische Rahmenbedingungen:

Bundesgesetz über das elektronische Patientendossier (EPDG)
Das Parlament hat das Bundesgesetz über das elektronische Patientendossier (EPDG) am 19. Juni 2015 verabschiedet.\(^1\) Es legt die gesetzlichen Vorgaben für die Bearbeitung von Daten und Dokumenten im Rahmen des elektronischen Patientendossiers fest. Mit dem elektronischen Patientendossier sollen die Qualität und Sicherheit sowie die Effizienz medizinischer Behandlungen verbessert werden.

Ausführungsrecht zum Bundesgesetz über das elektronische Patientendossier
Der Schweizerische Bundesrat hat am 15. April 2017 die Verordnung über das elektronische Patientendossier (EPDV) in Kraft gesetzt\(^2\). Die EPDV regelt die Eröffnung/Erstellung eines elektronischen Patientendossiers, den Zugang zum elektronischen Patientendossier, die Aufgaben der Gemeinschaften und der Stammgemeinschaften, die Zertifizierung, Aufgaben des Bundes sowie die Finanzhilfen.

<table>
<thead>
<tr>
<th>Tabelle 2: Verordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verordnung über das elektronische Patientendossier (EPDV)</td>
</tr>
<tr>
<td>Verordnung des EDI über das elektronische Patientendossier (EPDV-EDI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 3: Anhänge Verordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhang 2 der Verordnung des EDI über das elektronische Patienten- dossier (Zertifizierungsvoraussetzungen Gemeinschaften und Stammgemeinschaften)</td>
</tr>
<tr>
<td>Anhang 3 der Verordnung des EDI über das elektronische Patientendossier (Metadaten)</td>
</tr>
</tbody>
</table>

\(^1\) https://www.admin.ch/opc/de/classified-compilation/20111795/index.html
\(^2\) https://www.admin.ch/opc/de/classified-compilation/20163256/index.html
Anhang 5 der Verordnung des EDI über das elektronische Patientendossier
Liste der zu verwendenden IHE und nationalen Integrationsprofile

Ergänzung 1 zum Anhang 5 der Verordnung des EDI über das elektronische Patientendossier (Nationale Anpassungen der Integrationsprofile)
Schweiz spezifische Anpassungen der IHE Integrationsprofile für das EPD der Schweiz.

Ergänzung 2 zum Anhang 5 der Verordnung des EDI über das elektronische Patientendossier (Nationale Integrationsprofile)
EPD spezifische neue Integrationsprofile für die gemeinschaftsübergreifende Zugriffsteuerung und die Konfiguration der Zugriffsrechte

Anhang 8 der Verordnung des EDI über das elektronische Patientendossier (Zertifizierungsvoraussetzungen Herausgeber von Identifikationsmitteln)
Sicherheitsanforderungen für zertifizierte Identity Provider zur sicheren Authentisierung im EPD

Die Anhänge der Verordnung basieren teils auf den Empfehlungen von „eHealth Suisse“ (Standards & Architektur) und präzisieren sie oder erweitern sie.

Präzisierungen und Korrekturen zu den EPD-Vorgaben

Die rechtlichen Grundlagen zum elektronischen Patientendossier enthalten detaillierte Vorgaben zur Einführung. Bei der technischen und organisatorischen Umsetzung ist es aber möglich, dass Lücken, Unklarheiten oder Fehler auftauchen, die gefüllt, präzisiert oder korrigiert werden müssen. eHealth Suisse dokumentiert fortlaufend, welche Anpassungen bereits vorgeschlagen wurden und wie ihr Bearbeitungsstand ist.²

Achtung! Dieses Umsetzungshilfe geht von der Verordnung aus, die am 15.4.2017 in Kraft gesetzt wurde Berücksichtigt wurde erst, dass die eindeutige Patientenidentifikationsnummer mit EPR-SPID abgekürzt wird, anstelle von EPD-PID.

² https://www.e-health-suisse.ch/gemeinschaften-umsetzung/umsetzung/programmierhilfen.html
IHE Integrationsprofile

IHE\(^4\) - Integrating the Healthcare Enterprise - eine internationale Initiative fördert existierende Standards wie DICOM oder HL7 und deckt klinische Anforderungen im Daten austausch ab. Dazu wurden IHE Technical Frameworks erarbeitet, welche beschreiben, wie die existierenden Kommunikationsstandards eingesetzt werden, um einen fehlerfreien Daten austausch bezgl. einem spezifischen Anwendungsfall zu ermöglichen. Der Verein IHE Suisse\(^5\) engagiert sich für die Umsetzung der «Strategie eHealth Suisse». Er ist die Plattform zur Evaluation und Erarbeitung von IHE-Profilen, welche die Umsetzung des EPD unterstützen.

Ein IHE Technical Framework setzt sich aus verschiedenen IHE Inhaltsprofilen zusammen. Im Anhang der Verordnung referenziert die TOZ auf Integrationsprofile aus dem Infrastructure Technical Framework (IHE ITI)\(^6\).

Die Übersichtsgrafik vom BAG\(^7\) auf der nächsten Seite zeigt (auf A3 ausgedruckt für lesbare Form) wie die verschiedenen Profile sowie nationalen Anpassungen mit den IHE Akteuren und Transaktionen zusammen spielen. In den Anwendungsbeispielen in diesem Dokument wird auf die jeweiligen Integrationsprofile bzw. Transaktionen eingegangen.

\(^4\) http://www.ihe.net/
\(^5\) http://www.ihe-suisse.ch/
\(^6\) http://www.ihe.net/Technical_Frameworks/#IT
Abbildung 4: Übersichtsgrafik BAG, Electronic Patient Dossier (EPD), auch als separates Dokument verfügbar
3.3 Welche Teilabschnitte aus der Verordnung betreffen die Hersteller von Primärsystemen

Die Primärsysteme selber sind der Zertifizierungspflicht nicht direkt unterstellt, die Gemeinschaften als solche werden zertifiziert und müssen sicherstellen, dass die entsprechenden Schnittstellen zu den Primärsystemen korrekt arbeiten. Die Primärsysteme müssen aber in der Gemeinschaft in ein Verzeichnis aufgenommen werden (siehe Art. 11 EPDV sowie Erläuterungen Seite 19 zur Verordnung über das elektronische Patientendossier).

Sämtliche Datenübertragungen im Kontext des EPD muss verschlüsselt sein und bedingt ein Clientzertifikat auf Seiten des Primärsystems. Die Gemeinschaft muss mindestens die in der Verordnung festgelegten standardisierten Schnittstellen zur Verfügung stellen, damit sich die Primärsysteme entsprechend anbinden können. Die meisten dieser Schnittstellen kommen aus der IHE Domäne IHE ITI (IT-Infrastructure).

Gemeinschaften müssen sicherstellen, dass die neue eindeutige Patientenidentifikationsnummer (EPR-SPID) der ZAS nicht persistent in den Dokumentenablagen oder Dokumentenregistern gespeichert wird und in den Primärsystemen nicht direkt und dauerhaft mit Dokumenten der Patientinnen und Patienten verknüpft wird.
3.4 Welche Wege für den «Verkehr» sind vorhanden/erkennbar - und müssen begangen werden

Für die Primärsysteme gibt es unterschiedliche Vorgehensweisen für die Anbindung an eine zertifizierte Gemeinschaft. Im Folgenden werden Lösungen betrachtet für eine direkte Integration mit den IHE Profile in die zertifizierte Gemeinschaft. Alternative Lösungen wie eine Portalanbindung über Weblinks oder andere proprietäre Schnittstellen wurden in diesem Kontext nicht näher betrachtet, da es das Ziel war, eine interoperable Anbindung an verschiedene Gemeinschaften darzustellen.

Ein Hersteller von Primärsystemen kann Gründe für eine eigene Implementierung der vorgegebenen Schnittstellen zur Anbindung an zertifizierte Gemeinschaften haben. Gründe können sein, dass die Open Source-Bibliotheken nicht nahtlos in die Zielarchitektur passen, sie die Programmiersprache nicht unterstützen oder dass der Hersteller des Primärsystems die in den Profilen genutzten Standards bereits unterstützt. Die für die vorgegebenen IHE Profile benötigten, technischen Schnittstellenbeschreibungen sind öffentlich zugänglich und können zur direkten Implementierung im Primärsystem genutzt werden.

In einem komplexeren IT-Umfeld existieren unter Umständen schon Produkte im Umfeld des Primärsystems, welche die jeweiligen IHE Transaktionen implementieren. Dies kann zum Beispiel ein Archivierungssystem sein, das sich als Repository in die Gemeinschaft einbinden lässt. Die Anbindung von Archiv-Systemen oder anderen IT-Systemen kann dann über eine serviceorientierte Architektur (SOA) wie zum Beispiel mit einem Enterprise Service Bus (ESB) erfolgen. Wie in Abbildung 1 oben links angedeutet, könnte auch ein Kommunikationsserver alle Schnittstellen zur EPD-Infrastruktur abdecken und quasi als „Fassade“ gegenüber den Primärsystemen fungieren. In diesem

8 http://www.ihe-europe.net/connectathon/connectathon
9 https://product-registry.ihe.net/PR/home.seam
10 http://motorcleguy.blogspot.ch/p/open-source-standards-implementations.html
11 http://www.ehealth-connector.org
Fälle müssten die Primärsysteme nicht zwingend die geforderten Schnittstellen selber abbilden. Insbesondere im Spitalumfeld könnte dieses Szenario interessant sein.

Die Entwicklung von Integrationsprofilen geht auch bei IHE weiter. Das IHE Mobile Health Documents Integrationsprofil (MHD) definiert ein RESTful API um auf Dokumente zuzugreifen. Dieses Profil, welches im Trial Implementation Status ist, basiert auf dem entstehenden HL7 FHIR Standard\(^\text{12}\) und kann benutzt werden, um sich mit einem IHE XDS Dokumentenarchitektur, wie sie für das EPD vorgesehen ist, zu verbinden. Äquivalente RESTful API’s sind auch für das Patientenmatching (IHE PIXm, PDQm) in Entwicklung.

\(^{12}\) https://www.hl7.org/fhir/
4 Anwendungsfälle

Hinweis 1: Für den EPD-Projectathon13 wurden detailliertere und weitere Anwendungsfälle in Sequenzdiagrammen14 erarbeitet sowie dazugehörige Testbeschreibungen erstellt, die die Anbindung von Primärsystemen an das EPD hinausgehen.

Hinweis 2:

Dokumente sind ein Basiskonzept des Schweizerischen EPD. D.h. dass alle medizinischen Informationen innerhalb des EPD sind in Dokumenten abgelegt. Typische Dokumente sind Befunde und Berichte wie ein Austrittsbericht aus dem Spital oder ein Laborbefund aus einem grossen externen Labor, welches von einem Hausarzt in Auftrag gegeben wurde. Auch ein elektronisches Rezept oder ein elektronisches Impfdossier oder ein Bild zur Wund-Dokumentation kann als einzelnes Dokument im EPD publiziert werden.

„unstrukturiert“ bedeutet, dass die medizinischen Informationen in dem Dokument nicht automatisiert von Computern ausgewertet werden können wie z.B. ein PDF oder ein Bild im JPG-Format.

13 https://www.e-health-suisse.ch/technik-sembantik/epd-projectathon/informationen.html

14 https://www.e-health-suisse.ch/fileadmin/user_upload/Dokumente/2017/E/EPRSequenceDiagrams20170524.zip
Abbildung 5: Übersicht Prozesse (auch als separates Dokument verfügbar)
In den folgenden Kapiteln werden verschiedene Anwendungsfälle aufgezeigt, wie ein Primärsystem sich mit der Gemeinschaft verbinden kann:

Damit die Gesundheitsfachperson Zugriff auf das EPD-System bekommt, muss das Primärsystem die sichere Authentifizierung durch einen zertifizierten Identity Provider unterstützen.

Um den Patienten in der Gemeinschaft zu finden muss das Primärsystem die Abfrage des Master Patient Index (**MPI**) der Gemeinschaft unterstützen. Für die Registrierung von Patienten muss der Master Patient Index der Gemeinschaft angebunden sein.

Ein Primärsystem, welches sich an eine Gemeinschaft anschliessen will, sollte Dokumente aus dem Patientendossier abfragen und darstellen können.

Ein Primärsystem sollte behandlungsrelevante Dokumente aus der Krankengeschichte der Patienten im elektronischen Patientendossier publizieren können.
4.1 Sichere Identifikation/ - Authentifizierung

Der Arzt / die Gesundheitsfachperson meldet sich aus seinem Primärsystem am EPD-System an.

Arzt / Gesundheitsfachperson

Je nach Architektur des Primärsystems und entsprechend den Anforderungen des Identity-Providers kann der Use Case unterschiedlich ausgeprägt sein. Im Folgenden wird ein nicht abschliessendes Beispiel für eine 2-Faktor-Authentisierung in einem web-basierten oder Rich Client Primärsystem mit Benutzernamen und Passwort als erstem, und der Mobile-ID als zweitem Authentisierungsfaktor beschrieben.

Zum Zugriff auf das EPD müssen sich die Benutzer an einem zertifizierten Identity Provider authentisieren.

Die Verordnung [EPDV] definiert keine Identifizierungsmittel. Sie legt die Sicherheitsanforderungen und die Rahmenbedingungen für die Identifikationsmittel, für die Prozesse zur Herausgabe und für die Kommunikation der digitalen Identitäten fest. Welche Identifikationsmittel letztlich die Sicherheitsanforderungen erfüllen und im EPD-Kontext eingesetzt werden können, wird durch die Zertifizierung von Identifikationsmittel-Herstellern festgelegt.

Die Verordnung [EPDV] verweist zur Authentisierung der Benutzer von Primärsystemen auf die Authenticate User Transaktion des IHE XUA Profils. In der Ergänzung 1 zu Anhang 5 der Verordnung werden zwei Verfahren für die Transaktion definiert, SAML 2.0 Artifact Binding, gruppiert mit dem SAML 2.0 POST und SOAP Binding.

Dabei erfolgt die sichere Kommunikation der Identitäten, d. h. die Authentifizierungsantwort des Identity Provider an den Service, in signierten SAML 2.0 Assertions, die über eine HTTP SOAP Schnittstelle übermittelt wird [EPDV-AUTH]. Die entsprechenden Schnittstellen und Protokolle zur Authentisierung werden im Schutzprofil publiziert.

In der «Identity Provider initiated authentication» authentisiert sich der Benutzer zuerst beim Identity Provider und wählt in einem zweiten Schritt die Applikation aus. In der «Service Provider initiated authentication» hingegen, wählt der Benutzer direkt die Applikation aus, welche ihn zur Authentisierung an den Identity Provider weiterleitet oder diesen integriert.
Der genaue Ablauf ist in der Literatur [SAML -TO] beschrieben und soll an dieser Stelle nicht weiter vertieft werden. Es sollen hier nur die wichtigsten Aspekte für die Umsetzungshilfe des Authentisierungsverfahrens am Beispiel eines webbasierten Primärsystems kurz beschrieben werden. mit SAML 2.0 SOAP Binding».

Bei einem webbasierten Primärsystem mit «Service Provider initiated authentication» greift der Benutzer über den Web Browser auf die Ressource des webbasierten Primärsystems zu. Dabei kann die Ressource die Web Applikation selbst sein, oder auch nur der Bereich des Primärsystems, aus dem auf das EPD zugegriffen werden kann.

Der Identity Provider bestätigt die Authentifizierung mit einem SAML Artifact, mittels dessen der Service Provider die signierte SAML 2.0 Assertion mit den Angaben zur digitalen Identität des Benutzers über das SAML 2.0 SOAP Binding beim Identity Provider abfragen muss. Das Primärsystem prüft die Signatur der SAML 2.0 Assertion, verifiziert den ausstellenden Identity Provider und ordnet die digitale Identität dem Account des Benutzers zu.

4.2 Patientenregistrierung im EPD mit dem Primärsystem

Akteure

- Patient Herr Winter
- Arzt Dr. Rüegg

Anwendungsfall

Herr Winter hat aus den Nachrichten erfahren, dass es neu ein elektronisches Patienten dossier gibt. Er beschliesst, beim Hausarzt einen Termin zu vereinbaren, unter anderem um gemeinsam mit seinem Hausarzt ein EPD für sich zu eröffnen.

Einige Tage später erscheint Herr Winter zum telefonisch vereinbarten Arzttermin in der Praxis von Dr. Rüegg. Als er in die Sprechstunde gerufen wird, schildert Herr Winter seinem Hausarzt sein Anliegen. Dr. Rüegg bespricht mit Herrn Winter die Details des EPD (Anwendung, Rechten & Pflichten, …). Herr Winter unterschreibt die Einwilligung für das Eröffnen des EPD.

Dr. Rüegg öffnet im Primärsystem die Krankenakte von Herr Winter und wählt die Funktion «Registrierung des Patienten in der Stammgemeinschaft» aus. Damit werden die demographischen Daten von Herr Winter in der Stammgemeinschaft registriert.
Die unterschriebene Einwilligung wird zur Bearbeitung an die Stammgemeinschaft weitergeleitet/gesendet. Die Stammgemeinschaft schliesst die Eröffnung durch ihre internen Prozesse ab. Nach einigen Tagen erhält Herr Winter von der Stammgemeinschaft die Nachricht, dass er erfolgreich registriert wurde und dass er nun Zugriff auf sein EPD hat.

Abbildung 7: Sequenzdiagramm Patienten-Registrierung

Vorgängige Grafik zeigt die Abfolge der Transaktionen zur Registrierung eines Patienten im Master Patient Index (MPI) der Gemeinschaft. Der Bezug der EPD Patientidentifikationsnummer (EPR-SPID) von der ZAS geschieht durch andere Systeme, z.B. MPI und ist hier nicht im Detail abgebildet.

Achtung: Falls das Primärsystem mandantenfähig ist und die Mandanten einen eigenen Patientenstamm haben, so muss pro Mandantenstamm eine eigene OID bezogen werden.

http://oid.refdata.ch/

Damit die Audit-Einträge zeitlich miteinander vergleichbar sind, muss das IHE Consistent Time Inhaltsprofil (CT) implementiert werden. Consistent Time definiert die Transaktion Maintain Time zur Synchronisierung der Uhren mit einem zentralen Zeitserver über das NTP Protokoll17. Im Rahmen des EPD ist der zu verwendende Zeitserver (METAS) angegeben [EPDV-NATEXT]. Der Provider des Primärsystems muss sicherstellen, dass der zu verwendende NTP Server auf der Ebene des Betriebssystems konfiguriert ist.

17 http://www.ntp.org/
4.3 Demographische Patientensuche
Der Arzt sucht in der Gemeinschaft nach einem Patienten, welcher noch nicht in seinem PS erfasst ist.

- Patient Herr Winter
- Arzt Dr. Müller

Da Dr. Rüegg pensioniert wurde, hat Herr Winter die Berechtigung zum erweiterten Zugriff auf sein EPD seinem neuen Hausarzt Dr. Müller erteilt. Dr. Müller will sich einen Überblick über die Krankengeschichte von Herr Winter verschaffen. Er will dazu die Dokumente im Zusammenhang mit Herr Winter im EPD einsehen und zwar bevor Herr Winter zum ersten Mal zu ihm in die Sprechstunde kommt.

Dr. Müller wählt den «richtigen» Herr Winter aus. Er kann das EPD öffnen um die Übersicht zu erhalten (siehe nächster Anwendungsfall).

Abbildung 8: Sequenzdiagramm Patientensuche

Die vorgängig dargestellte Abbildung zeigt die Abfolge der Transaktionen zur Suche eines Patienten anhand der demografischen Daten innerhalb der Gemeinschaft.

Die Resultatliste gibt die demographischen Daten der Patienten zurück inklusive der MPI-ID, die den Patienten in der Gemeinschaft identifiziert.
Die Gesundheitsfachperson kann nun den entsprechenden Patienten wählen oder aber die Abfrage neu starten, falls er die Person noch nicht gefunden hat.

Die Audit Nachricht muss gemäss Kapitel 3.47.5.1.1 [IHE TF2b] aufgebaut sein.

Siehe Beschreibung Kapitel 4.2 für die entsprechenden Anforderungen für Consistent Time/Secure Node Authentication.

Eine Patientensuche mittels demographischer Daten kann nur innerhalb der Gemeinschaft erfolgen, für die Suche über Gemeinschaftsgrenzen hinweg darf nur die EPD Patientenidentifikationsnummer (EPR-SPID) verwendet werden. Falls diese Patientenidentifikationsnummer nicht bekannt ist, bedarf es einer Abfrage der ZAS (siehe oben).

4.4 Dokumentenzugriff

4.4.1 Dokumentenübersicht

Der Arzt Dr. Müller sucht in der Dokumentenübersicht ein Dokument seines Patienten.

- Patient Herr Winter
- Arzt Dr. Müller

Dr. Müller hat sich vorher schon stark authentisiert (siehe Kapitel 4.1 Sichere Identifikation/ -Authentifizierung). Das Primärsystem fragt die Dokumentenübersicht über alle im EPD von Herr Winter abgelegten Dokumente an, für deren Ansicht Dr. Müller berechtigt ist. Das System stellt die erhaltenen Dokumenteneinträge in einer Übersicht dar.
Die Abbildung zeigt die Abfolge der Transaktionen zur Abfrage der Metadaten der EPD Dokumente eines Patienten.

Zur Abfrage der Metadaten der EPD Dokumente eines Patienten muss das Primärsystem die MPI-ID des Patienten in der Gemeinschaft kennen. Die EPR-SPID des Patienten wird nur benutzt um das Berechtigungstoken (siehe übernächster Abschnitt) zu erstellen, soll also nicht in den Primärsystemen gespeichert werden.

Dazu fragt das Primärsystem als Akteur Patient Identifier Cross-Reference Consumer mit einer PIXV3 Query [ITI-45] die MPI-ID sowie die EPR-SPID ab. Das Primärsystem führt dazu die PIXV3 Query mit der lokalen ID des Patienten im Primärsystem und die OID des Mandanten (siehe vorheriges Kapitel für die Registrierung) an den MPI.

Die Audit Nachricht für die PIX V3 Query muss gemäss Kapitel 3.45.5 [IHE TF2b] aufgebaut sein.

Dabei ist zu beachten, dass mit der Abfrage der EPD XUA konformen Transaktion gewisse Attribute bereits mitgegeben werden müssen, welche zum Zeitpunkt der Abfrage nur dem Primärsystem bekannt sein können. Diese sind z.B. die EPR-SPID des Patienten, auf dessen Dossier zugegriffen werden soll und ob es sich um einen Notfallzugriff handelt.
Das Primärsystem ruft als Akteur Document Consumer die Registry Stored Query [ITI-18] auf um die Liste der Metadaten und Dokumente zu erhalten. Es stehen verschiedene Query-Möglichkeiten zur Verfügung. Für die Übersicht aller Dokumente kann die FindDocuments Query verwendet werden (siehe Kapitel 3.18.4.1.2.4 Stored Query IDs [IHE TF2]).

Der FindDocumentsQuery wird als Parameter die MPI-ID des Patienten angegeben. Für die gefundenen Dokumente werden Dokumenteneinträge zurückgegeben, die entsprechende Metadaten beinhalten. Diese Dokumenteneinträge kann das Primärsystem dann entsprechend visualisieren.

Metadaten, die zu einem Dokument zurückgegeben werden (Dokumenten ID, Erstellungszzeit, Angabe des Repositories usw.) sind im Kapitel 4.1.3.2 [IHE TF 3] definiert.

Die Audit Nachricht für die Registry Stored Query muss gemäss Kapitel 3.18.5.1.1 [IHE TF2a] aufgebaut sein. Siehe Beschreibung Kapitel 4.2 für die entsprechenden Anforderungen für Consistent Time/Secure Node Authentication

4.4.2 Notfallszenario

Der Notfallarzt im Spital veranlasst einen Notfallzugriff auf das EPD eines Patienten.

- Patient Herr Winter
- Notfall-Pflegefachperson
- Notfallarzt

Herr Winter wird notfallmässig aufgrund eines Armbruchs auf der Notfallstation eines Spitals eingeliefert.

Die Grafik zeigt die Abfolge der Aktionen und Transaktionen zur Abfrage der Metadaten der EPD Dokumente im Notfallzugriff.

4.4.3 Dokumenten Download
Der Hausarzt fügt ein Dokument aus dem EPD der elektronischen Krankengeschichte des Patienten im Primärsystem zu.

- Dr. Müller

Herr Winter wurde im Spital nach einer Röntgenbild-Befundung am Bein operiert.

Dr. Müller hat Bescheid erhalten, dass Herr Winter im Spital war. Dr. Müller will den Austrittsbericht zu der Krankengeschichte in seinem Primärsystem ablegen.

Er wählt den Patienten Herr Winter in seinem Primärsystem und lässt sich das EPD anzeigen (siehe Kapitel 4.4.1 Sichere Identifikation/- Authentifizierung). Er wählt den gefundenen Operationsbericht vom Spitalaufenthalt von Herr Winter in der Patientenübersicht an, selektiert den Bericht und das Primärsystem lädt dann den Operationsbericht herunter und fügt ihn der elektronischen Krankengeschichte zu.
Das Dokument wird inkl. Metadaten in der elektronischen Krankengeschichte von Herrn Winter im Primärsystem der Hausarztpraxis abgespeichert.

Abbildung 11: Sequenzdiagramm Dokumenten Download

Um ein Dokument hinunterzuladen braucht es auch ein entsprechendes Berechtigungstoken, dass der Dokumentenabfragen hinzugefügt werden muss. Diese Schritte, das Erhalten der MPI-ID auf Grund der PIX Query, sowie Auditieren des Events und Erstellen des XUA Tokens sind äquivalent dem Anwendungsfall Patienten-Registrierung und sind hier nicht weiter beschrieben (*siehe Kapitel 4.2*).

Aus den Metadaten des Dokumenteneintrages (*siehe Kapitel 4.4.1*) kann das entsprechende Repository (*repositoryUniqueId*) bestimmt und die Dokumenten-ID (*uniqueId*) herausgelesen werden.

Die Audit Nachricht für die Registry Stored Query muss gemäss Kapitel 3.43.5.1.1 [IHE TF2b] aufgebaut sein.

Siehe Beschreibung Kapitel 4.2 für die entsprechenden Anforderungen für Consistent Time und Secure Node Authentication

4.4.4 Bildzugriff im EPD (DICOM)

Der Arzt schaut sich ein Röntgenbild im EPD eines Patienten an.

- Arzt Dr. Müller

Dr. Müller will sich ein Röntgenbild des Patienten Winter, welches im Operationsbericht erwähnt ist, genau anschauen. Er wählt die Dokumentenübersicht von Herrn Winter an. Im System wählt er die gewünschte Bild-Studie aus und er öffnet sie im webbasierten Viewer des Primärsystems. Nachdem er sich einzelne Bilder angeschaut hat, will er die ganze Bild-Studie in sein Primärsystem herunterladen und diese dann mit dem nativ eingebauten Viewer im Primärsystem anschauen.

Abbildung 12: Sequenzdiagramm, Bildzugriff im EPD

Bilddateien im DICOM Format können grosse Dateimengen beinhalten und dürfen im Bildarchiv-System direkt für das EPD bereitgestellt werden. Dies bedeutet: das Bildarchiv-System ist dann in der Rolle des Primärsystems und agiert nicht als sekundäre Dokumentenablage. In der sekundären Dokumentenablage (Repository) wird in diesem Fall nur das «Inhaltsverzeichnis» der Bilddateien gespeichert (KOS Manifest) und in der Registry registriert. IHE bildet diese Prozesse im Radiology Technical Framework ab, baut auf dem XDS.b Profil auf und nennt die Erweiterung XDS-I.

Das Primärsystem erkennt aufgrund der Metadaten bei einer Anfrage an die Registry, dass es sich um ein DICOM-Bild handelt und kann das entsprechende KOS Manifest hinunterladen (siehe Kapitel 4.4.1, in obigem Sequenzdiagramm nicht dargestellt). Das
Primärsystem lädt anschließend das KOS Manifest herunter über die ITI-43 Transaktion (siehe Kapitel 4.4.3 Dokumenten Download). Um das Sequenzdiagramm zu vereinfachen, wurden die jeweiligen Audit Transaktionen weggelassen.

Aus dem KOS Manifest kann das Primärsystem WADO URLs generieren und so entsprechend Einzelbild-Anfragen an das Bildarchivsystem stellen um die Bilder darzustellen.

Falls das Primärsystem einen integrierten DICOM-Viewer beinhaltet, so kann auch die ganze DICOM-Datei heruntergeladen werden.

4.5 Dokumentenpublikation

Der Arzt publiziert ein Dokument im EPD eines Patienten.

- Arzt Dr. Müller
- Patient Herr Winter

Hinweis: Je nach Primärsystem-Software-Funktionalität könnte dieser Prozess auch automatisiert ablaufen für Dr. Müller. Zum Beispiel könnte sein Primärsystem so konfiguriert sein, dass alle fertigen Konsultations-/Untersuchungsberichte automatisch in das EPD des Patienten abgelegt werden, wenn sie in seinem Primärsystem abgespeichert werden. So wären keine zusätzlichen manuellen Schritte notwendig.

Falls der Patient eine Publikation nicht wünscht, muss die Möglichkeit bestehen einen solchen Automatismus zu deaktivieren.
Die Grafik zeigt die Abfolge der Transaktionen zur Publikation eines Dokuments im EPD des Patienten.

Um ein Dokument zu publizieren, braucht es ein entsprechendes Berechtigungstoken, welches der Dokumentenpublikation hinzugefügt werden muss. Die Schritte Abfrage der MPI-ID, EPR-SPID mit der PIX Query, Auditieren des Events und Erstellen des XUA Tokens sind äquivalent dem Anwendungsfall Patienten-Registrierung und sind hier nicht weiter beschrieben (siehe Kapitel 4.2).

Metadaten, die zu einem Dokument angegeben werden (Dokument ID, Erstellungszeit, usw.), sind im Kapitel 4.1.3.2 [IHE TF 3] definiert.

Die Audit Nachricht für die 'Registry Stored Query' muss gemäss Kapitel 3.43.5.1.1 [IHE TF2b] aufgebaut sein.

Siehe Beschreibung Kapitel 4.2 für die entsprechenden Anforderungen für Consistent Time/Secure Node Authentication.

Falls ein Primärsystem die Dokumente nicht direkt bei der Freigabe des Arztes publiziert, sondern periodisch zu gewissen Zeitpunkten, muss die Authentisierungsassertion (get-X-User Assertion) bei der Freigabe zwischengespeichert werden (ggfs. verlängert werden).
Die Verordnung sieht vor, dass nur die gemäss Anhang 3 der EPDV-EDI zugelassenen Dateiformate gespeichert werden, sowie Dateien im PDF Dateiformat nur in der Ausprägung PDF/A-1 oder PDF/A-2 gespeichert werden.

Hinweis: Gemäss Kapitel 2.4 der TOZ kann der Patient die voreingestellte Vertraulichkeitsstufe für neu publizierte Dokumente selber festlegen. Diese Einstellung kann aber nicht abgefragt werden. Ein möglicher Ansatz ist mit der Vertraulichkeitsstufe „normal“ zu publizieren, und falls dies fehlschlägt dann mit der Vertraulichkeitsstufe „restricted“.

4.6 Suche und Rechte-Delegation (Ermächtigung) von Gesundheitsfachpersonen

Der Arzt möchte einem Arzt-Kollegen die Berechtigung auf ein EPD eines seiner Patienten geben.

Hinweis: diese Ermächtigungs-Funktionalität gilt für alle EPD Gesundheitsfachpersonen, der Patient entscheidet welcher Gesundheitsfachperson er ein solches Recht erteilt.

Akteure

- Arzt Dr. Müller
- Stellvertreter Dr. Meier

Dr. Müller will während seinen Ferien seinem im gleichen Wohnquartier praktizierenden Kollegen Dr. Meier die Zugriffsberechtigung auf das EPD von Herr Winter erteilen und hat dafür vorher von Herr Winter dieses Ermächtigungs-Recht erhalten.

Dr. Müller wählt im Primärsystem - dort in der Krankengeschichte von Herr Winter - die gewünschte Funktion «Stellvertreter angeben» an. Es öffnet sich eine Suchfunktion in der Dr. Müller den Herr Dr. Meier anhand diverser Angaben im Health Provider Directory der Gemeinschaft suchen kann. Er wählt den Dr. Meier im Primärsystem an und erteilt ihm so die Zugriffsberechtigung.

Abbildung 14: Sequenzdiagramm, Suche von Gesundheitsfachpersonen zur Erteilung von Zugriffsrechten

Die Abbildung stellt die Transaktion dar zur Suche einer Gesundheitsfachperson im Provider Directory (HPD) der Gemeinschaft oder im nationalen Register.

Die nationale Erweiterung präzisiert zusätzlich die Optionalitäten für die Angaben für die Gesundheitsfachpersonen, bzw. Organisationen.

Zugriffsrechte können mit dem nationalen Integrationsprofil Privat Policy Query verwaltet werden. Um die Zugriffrechte zu ändern, braucht es auch ein entsprechendes Berechtigungstoken, das der PPQ Transaktion hinzugefügt werden muss. Das Erstellen des XUA Tokens ist äquivalent dem Anwendungsfall Patienten-Registrierung und ist hier nicht weiter beschrieben (siehe Kapitel 4.2).

Mit der AddPolicyRequest Transaktion kann das Zugriffsrecht für die Stellvertretung hinzugefügt werden. Das Format der Zugriffsrechte basiert auf dem XACML v2.0 Standard.

21 http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_Suppl_HPDPdf.pdf
Das Health Provider Directory (HPD) beinhaltet nur die Gesundheitsfachpersonen, Gruppen und Organisation die am EPD teilnehmen, es zeigt somit nur eine Teilmenge aller in der Schweiz tätigen Behandelnden an. Der HPD einer Gemeinschaft enthält mindestens alle Gesundheitsfachpersonen seiner Gemeinschaft, die am EPD-System teilnehmen sollen/können, kann aber auch andere Gesundheitsfachpersonen beinhalten, die innerhalb der Gemeinschaft eine Rolle wahrnehmen, aber eben kein EPD-Anwender sind.

4.7 Aktualisierung der gültigen EPD-Metadaten

Das Primärsystem kann periodisch ein Update über die verfügbaren Metadaten vom nationalen Metadaten-Dienst der Gemeinschaft anfordern. Diese Daten beinhalten zum Beispiel Werte für Dokumentenklasse, Dokumententyp, Fachrichtung in dessen Kontext das Dokument entstand, Gesundheitseinrichtungstyp, in dessen Kontext das Dokument entstand sowie die Rolle des Autors.

Hinweis: dieser Automatismus bzw. elektronische Abfragemöglichkeit der Metadaten ist nicht zwingend erforderlich, eine Konfiguration der Systeme kann auch manuell geschehen. Die Liste aller aktuell gültigen EPD-Metadaten sind auch strukturiert in ART-DECOR verfügbar.\(^{22}\)

Abbildung 15: Sequenzdiagramm, Metadatenupdate

Die Abbildung zeigt die Transaktion zur Abfrage des Value Sets (Wertebereiche) der EPD Metadaten aus dem nationalen Index (Teil der zentralen Abfragedienste) zum Abgleich im Primärsystem.

Mit der Retrieve Multiple Values Sets Transaktion [ITI-60, IHE ITI TF2b] können Metadaten per Webservice abgefragt werden und die Value Sets im Primärsystem entsprechend aktualisiert werden.

\(^{22}\) https://art-decor.org/art-decor/decor-valuesets--ch-epr-
5 Lösungsansätze für Anbindung an EPD-Infrastruktur

5.1 Mögliche Vorgehensweisen für die Hersteller von Primärsystemen

In den folgenden Kapiteln wird spezifisch auf eine mögliche native (direkte) Einbindung oder die Einbindung via eHealth Connector eingegangen.

Andere Schnittstellen (API) oder die Anbindung über serviceorientierte Architekturen mit proprietären Schnittstellen werden nicht behandelt. Die neuen IHE Profile MHD, PIxM, PDQm, die in der Verordnung nicht festgelegt sind, werden ebenfalls nicht beschrieben.

5.2 Native Implementierung, direkt mit IHE

5.2.1 Technisches Framework (IHE)

Die aus der Verordnung empfohlenen Profile sind im IHE Technischen Framework definiert.

Im Volume 1 werden die einzelnen Inhaltsprofile für Cross Enterprise Document Sharing, Patient Identifier Cross-Referencing for MPI sowie Audit Trail und Node Authentication, Consistent Time und weitere aufgelistet.

Volume 2 definiert die einzelnen Transaktionen zu den jeweiligen Profile, im Volume 2a befinden sich die Transaktionen mit den Nummer 1-28, im Volume 2b die Transaktionen 29-64. Jede Transaktion hat eine Verbindung zu einem Use Case, es folgen Interaktionsdiagramme, Nachrichtenformate, erwartetes Verhalten, Auditanforderungen und Beispiele für die Inhalte der Requests und Responses.

Volume 3 definiert transaktionsübergreifende Inhalte wie das Dokumentenmodell von XDS sowie Metadaten und Inhaltsprofile.

In Volume 4 werden die nationalen Erweiterungen aufgelistet. Die von der Schweiz vorgelegten, nationalen Erweiterungen sind bisher noch nicht aufgenommen worden und können im Moment nur im Anhang zu den EPD-Verordnungen nachgeschlagen werden.

5.2.2 Implementation Material (IHE)

Seitens IHE gibt es für jedes Framework zusätzliches Implementationsmaterial auf einem FTP Server. Dort befinden sich die Schemas, Webserviceschnittstellen (WSDL Dateien) sowie Beispiele.\(^{23}\)

Anbei ist eine nicht abschliessende Auflistung verschiedener Technologien die im IHE ITI Framework verwendet und beherrscht werden müssen:

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Anwendungsbereiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServices</td>
<td>XML, WSDL, SOAP12 mit MTOM</td>
</tr>
<tr>
<td>Authentisierung, Authorisierung</td>
<td>SAML2.0, XACML 2.0</td>
</tr>
<tr>
<td>WebServices PIX, PDQ</td>
<td>HL7 V3 RMIM</td>
</tr>
<tr>
<td>WebServices Registry</td>
<td>ebXML</td>
</tr>
<tr>
<td>ATNA</td>
<td>Certificates handling</td>
</tr>
</tbody>
</table>

5.2.3 Test-Werkzeuge (IHE und andere)

Um eine Implementierung zu testen, stehen unterschiedliche Tools je nach Integrationsprofil zur Verfügung.

NIST stellt ein IHE PIX und PDQ Pre-Connectathon-Test-Tool zur Verfügung um die einzelnen Transaktionen für PIX und PDQ zu testen.\(^{24}\)

IHE Services Europe stellt mit Gazelle, dem Testing Tool von IHE, einen EVS Client bereit. Der EVS Client unterstützt die Validierung der HL7v3 PIXV3, PDQV3 sowie XCPD Nachrichten.\(^{25}\) Des Weiteren können die ATNA Nachrichten überprüft werden\(^{26}\) sowie die XDS Metadaten\(^{27}\). Gazelle stellt auch Simulatoren bereit für SVS, HPD sowie XCPD\(^{28}\).

Gazelle Security Token Service (STS)\(^ {29}\).

NIST stellt eine NIST Document Sharing Test Facility zur Verfügung.\(^{30}\) Diese besteht aus einer öffentlichen Registry gegen die getestet werden kann. Zusätzlich stellen sie das XDS Toolkit zur Verfügung mit dem weitere Tests auch lokal gemacht werden können. Das XDS Toolkit ist auch die Referenzimplementierung für Tests an den IHE Connectathons.

eHealth Suisse stellt verschiedenste Programmierhilfen zur Verfügung im Zusammenhang mit dem EPD\(^ {31}\):

- Präzisierungen und Korrekturen zu den EPD-Vorgaben
- Zentrale Abfragedienste: HPD, CPI und MDI
- Zentrale Ausgleichsstelle: UPI
- Testplattform und Use Cases (EPD-Projectathon)

\(^{23}\) ftp://ftp.ihe.net/TF_Implementation_Material/ITI/
\(^{24}\) http://pixpdqtests.nist.gov/pixpdqtool/#documentation.htm
\(^{25}\) https://gazelle.ihe.net/content/hf7v3-validation-service
\(^{26}\) https://gazelle.ihe.net/content/atna-logging-message-validation
\(^{27}\) https://gazelle.ihe.net/content/xds-metadata-validator
\(^{28}\) https://gazelle.ihe.net/content/simulators
\(^{29}\) https://gazelle.ihe.net/content/security-token-service-sts
\(^{30}\) http://ihexds.nist.gov/
\(^ {31}\) https://www.e-health-suisse.ch/gemeinschaften-umsetzung/umsetzung/programmierhilfen.html

5.3 eHealth Connector

Initiiert wurde die Entwicklung des eHealth Connector mit dem Integrationskonzept „HL7 CDA in Arztpraxissoftware“ von Dr. med Franz Marty (Medizinisches Zentrum Gleis D AG), Tony Schaller (medshare GmbH) gefolgt von einem Konzept zur Implementierung und API Spezifikation in Zusammenarbeit mit Open Connections GmbH im November 2013.

Ziel des eHealth Connector ist es, die Vernetzung der verschiedenen Akteure im Gesundheitswesen zu erleichtern, den Datenaustausch zu harmonisieren, sowie den Aufwand für die Integration eines Informationssystems in eine eHealth Infrastruktur zu senken.

Der eHealth Connector soll ein erfolgreiches Bestehen der Tests für alle implementierten IHE-Transaktionen und IHE Content-Profiles (basierend auf HL7 CDA) auf dem IHE-Connectathon ermöglichen, sowie ein Bestehen der Tests für alle implementierten Transaktionen und Inhaltsprofile bei länderspezifischen Zertifizierungen.

Der eHealth Connector basiert auf der Eclipse Public License, eine Open Source Lizenz, die es erlaubt den eHealth Connector auch in kommerziellen Produkten zu verwenden und anzupassen.

Es finden bis zu zweimal jährlich User-Treffen statt, an denen Vertreter von interessierten und beteiligten Firmen teilnehmen können.

32 http://sourceforge.net/p/ehealthconnector/wiki/Home/
35 https://sourceforge.net/p/ehealthconnector/wiki/Home/
In den letzten zwei Jahren kamen von verschiedensten Firmen und Organisationen Kontributionen in den eHealth Connector. Eine Auflistung findet sich hier\(^{36}\).

IHE Suisse unterstützt die Qualitätssicherung von zwei Releases pro Jahr. Die konkreten Inhalte/Erweiterungen müssen von Kontributoren kommen.

Des Weiteren ist eine Interessengemeinschaft eHealth Connector im Aufbau, die die nachhaltige Entwicklung im Bereich Publicity, Finanzierung, Wartung und Koordination unterstützen soll. Interessierte melden sich bitte bei IHE Suisse.\(^{37}\)

5.3.1 eHealth Connector Software

Der eHealth Connector besteht aus einer Java Library oder einer .NET DLL die vom Primärsystem genutzt und eingebunden werden kann.\(^{36}\)

Die Source steht auf sourceforge.net zur Verfügung und die Libraries können auch direkt mit dem Maven Build System gebaut werden.\(^{39}\)

Es stehen Demoprogramme für Java sowie .NET zur Verfügung, welche die einzelnen Features des eHealth Connector aufzeigen.

Mitglieder von IHE Suisse können Binaries dieser Demoprogramme direkt im Mitgliederbereich hinunterladen.\(^{40}\)

Für Entwickler und Implementierer steht bei Fragen auch eine Google Group zur Verfügung.\(^{41}\)

\(^{38}\) https://sourceforge.net/p/ehealthconnector/wiki/R201704/

\(^{39}\) https://sourceforge.net/p/ehealthconnector/wiki/Building%20the%20eHealth%20Connector/

\(^{40}\) http://www.ihe-suisse.ch/mitgliederbereich/dokumente-fuer-mitglieder/ehealth-connector.html

\(^{41}\) https://groups.google.com/forum/#!forum/ehc-implementors
Der eHealth Connector bietet eine Convenience API für Java sowie .NET an, damit ein Primärsystem die Funktionalität benutzen kann. Die Codebasis des eHealth Connectors ist Java. Damit sie auch unter .NET benutzt werden kann, wird mit dem Open Source Projekt IKVM\(^{43}\) das eHealth Connector jar in eine .NET DLL umgewandelt.

Der eHealth Connector hat die Funktionalität nicht komplett neu entwickelt, sondern setzt auf bestehende Open Source Projekte auf wie Model Driven Health Tools (MDHT) und Open Health Tools (OHT).

Model Driven Health Tools (MDHT) ist eine standardbasierte OOAD basierte Methodologie um CDA Templates zu erstellen. MDHT ist ein Projekt das innerhalb vom Eclipse Modeling Project weiterentwickelt wird\(^{44}\). Im aktuellen Release des eHealth Connectors finden sich Modelle für folgende Inhaltsprofile: IHE IC, IHE XD-LAB, IHE EDES, IHE Pharmacy sowie die dann davon abgeleitete Schweizer Austauschformate (CDA-CH-VACD, -LRQC, -LRTP, -EDES). Es ist beabsichtigt, dass alle im Anhang 4 der EPD-Verordnung erwähnten Austauschformate auch vom eHealth Connector implementiert werden.

Für folgende IHE-Kommunikationsprofile, die für Primärsysteme im Rahmen des EPDG vorgegeben sind, bietet der eHealth Connector mit dem Convenience API/OHT oder nur direkt mit OHT Unterstützung:

\(^{43}\) https://sourceforge.net/projects/ikvm/

\(^{44}\) https://projects.eclipse.org/projects/modeling.mdht

Tabelle 5: Abdeckung IHE Kommunikations-Profile, Convenience API Stand August 2016

<table>
<thead>
<tr>
<th>Profile</th>
<th>Akteur</th>
<th>Convenience API</th>
<th>OHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATNA</td>
<td>Secure Node</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>CT</td>
<td>Time Client</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>PIXV3</td>
<td>Patient Identity Source</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Patient Identity Cross-ref. Consumer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDQV3</td>
<td>Patient Demographics Consumer</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>XDS.b</td>
<td>Document Consumer</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Document Source</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>XUA</td>
<td>X-Service User</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>HPD</td>
<td>Provider Information Source</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Provider Information Consumer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVS</td>
<td>Valueset Consumer</td>
<td>-</td>
<td>ja</td>
</tr>
</tbody>
</table>

Dies ist der aktuelle Stand April 2017 der Abdeckung der Kommunikationsprofile von IHE. Er kann sich mit der weiteren Entwicklung des eHealth Connectors ändern.

Für die Schweiz spezifischen nationalen Erweiterungen (CH:ATNA, CH:PIX, CH:PDQ, CH:PIDD) sowie das neue nationale Integrationsprofil CH:ADR&PPQ besteht für die Clientseite im Moment weder im Convenience API noch im OHT direkt eine Unterstützung.

Serverseitig bieten die OHT Komponenten keine direkte Unterstützung für die Implementierung der Profile, ein erstes Konzept wie eine serverseitige Lösung aufgebaut werden kann, ist im Architekturkonzept für den Empfang von Dokumenten in der elektronischen Punkt-zu-Punkt-Kommunikation im Gesundheitswesen beschrieben.46

Ein Konzept einer möglichen Umsetzung zur Unterstützung der Authentifizierung sowie der Autorisierung mit dem eHealth Connector wurde im Herbst 2016 publiziert47.

6 Lösungsansätze für visuelle EPD-Integration

In diesem Kapitel werden grundsätzlich mögliche Integrationsszenarien kurz skizziert, wie die EPD-Informationen den Anwendern (EPD-Gesundheitsfachpersonen) angezeigt werden könnten.

6.1 Backend-Integration

Abbildung 17: Backend-Integration

6.2 Frontend-Integration

Folgende Abbildung zeigt kurz schematisch diese Art der Integration.
6.3 Web-Portal Aufruf

Bei diesem Szenario gibt es im Prinzip auf Ebene der Benutzeroberfläche gar keine Integration. Dennoch sollte ein möglichst einfacher Aufruf des externen EPD-Web-Portals möglich sein mit einem SSO und Übergabe des Patientenkontextes. Der Anwender müsste in diesem Fall mit zwei getrennten Applikationen/Programmen hantieren. Folgende Abbildung zeigt schematisch diese Art der Integration.
7 Welche Fragen sollten sich Hersteller von Primärsystemen stellen und Antworten dazu finden?

Die Arbeitsgruppe hat sich Gedanken darüber gemacht, mit welchen Fragen sich die Herstellerfirmen und deren Kunden (Anwendende) befassen könnten/sollten. Dabei geht es nicht darum, eine abschliessende Liste von Fragen zu präsentieren. Die aufgeführten Fragen sollen dazu dienen, den Einstieg in die Fragestellungen für sich selber zu finden.

7.1 Generelle, grundsätzliche Fragen

- Betrifft uns unternehmerisch dieses Thema EPD?
- Wissen wir, um was es geht und welche Felder uns betreffen?
- Bis wann müssen oder wollen wir eine Lösung zur Verfügung stellen?
- Warten wir ab, bis wir «müssen», oder handeln wir möglichst bald?
- Wie gehen wir damit um, wenn wir es «noch nicht» umgesetzt haben aber unsere Kunden es verlangen (ungeachtet von der Menge der Anfragen oder welche kritische Menge gilt?)?
- Verfügen wir über alle Grundlagen und Fakten, damit wir bestimmen können?
- Was erwarten unsere Anwendenden von uns (entsprechend von unserer Lösung?)
- Wer könnte uns beratend unterstützen, falls wir Fragen zum System haben?
- Könnten wir das Projekt mit anderen Firmen zusammen realisieren?
- Bis wann muss was in welcher Form für wen verfügbar sein?
- Handelt es sich bei diesem Thema um ein «MUSS» – werden künftig die Funktionen rund um das EPD als Basisfunktionen mit «Rahmenbedingungscharakter» wahrgenommen?
- Welche Fragen für das Angehen zur Umsetzung sind noch zu beantworten?

7.2 Technologisch

- Welcher «Zugangsweg» ist für uns aus technologischer Sicht machbar und sinnvoll?
- Welche Art der Integration soll umgesetzt werden (Backend- oder Frontend-Integration)?
- Erleichtern uns gegebene Mittel (z.B. eHealth Connector) die Arbeit?
- Welche Abhängigkeiten schaffen wir durch welchen Weg?
- Wen kann ich allenfalls fragen? Gibt es im Umfeld (z.B. in Verbänden) Leute, die uns helfen den Aufwand in Grenzen zu halten?
- Haben wir verschiedene Versionen im Markt? Wenn ja, für welche Version machen wir diesen Schritt?
- Gehört die Veränderung/Erweiterung der Software in den regulären Updatezyklus oder handelt es sich um eine eigenständige Sache?
- Wie gelangen die neuen Funktionen per wann zum Kunden? Updateprozedere oder Einzelinstallation?
- Fragen bzgl. technischer Sicht, ist das Know-how vorhanden?

7.3 Betriebswirtschaftlich

- Wie viel kostet uns die mögliche Entwicklung/Funktionserweiterung?
- Was verlieren wir, wenn wir den Zugang für unsere Anwendenden nicht oder noch nicht ermöglichen?
- Welche Art der Integration (Backend- oder Frontend-Integration) macht aus Business-Sicht mittel- und langfristig am meisten Sinn?
• Wie sehen die Anwendenden die Kostenseite? Wären sie bereit, etwas dafür zu bezahlen?

7.4 Organisatorisch

• Wen betrifft es innerhalb unserer Unternehmung? Wer verfügt über die Fähigkeiten und das Wissen? Wer eignet sich dafür?
• Wen müssen wir ausbilden? Wer muss in welchem Umfang Bescheid wissen (auch z.B. für die Gespräche mit den Kunden, für Ausbildungslektionen usw.)?
• Wer bildet intern aus und was ist dazu notwendig?
• Mit wie viel Zeitaufwand für die Umsetzung/das Ausrüsten der Software mit der Fähigkeit für das Anbinden an das EPD rechnen wir bei welcher Variante (IHE direkt, eHealth Connector, andere API, …)?
• Verfügen unsere Mitarbeitenden über das notwendige Wissen (nicht nur fachlich für die Umsetzung in der Software, sondern das System betreffend, z.B. was muss genau erzielt werden?)
• Verfügen wir über die notwendigen Ressourcen (vor allem personell)?
• Müssen wir als Herstellerfirma unsere Anwender über unseren „Weg“ orientieren? Wer, wann, womit, über was? Welche Erwartungen haben unsere Anwender in welchem Zeitraum und in welchem Umfang?
• Wird das Thema auf der «Marketing-Ebene» relevant?
• Wie bilden wir unsere Kunden aus? Welche Inhalte müssen vermittelt werden und wie viel Zeit ist dafür vorzusehen?
8 Handlungsempfehlungen

8.1 Aktive Auseinandersetzung mit dem Thema

8.2 Ausbildung innerhalb der Firmen / innerhalb der Branchengruppierungen

8.2.1 Für die Anwender

8.2.2 Branchengruppierungen

9 Kontakte, Quellen, Anlaufstellen

Für eine Einführung in den Themenbereich der Authentifizierung mit SAML 2.0 und dem SAML Standard ist dem interessierten Leser der Technische Überblick der Oasis empfohlen, der unter der Adresse 48 abgerufen werden kann.

10 Literatur

<table>
<thead>
<tr>
<th>IHE Infrastruktur Technisches Framework, Volume 1</th>
<th>[IHE ITI TF-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration Profiles</td>
<td>http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol1.pdf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IHE Infrastruktur Technisches Framework, Volume 2</th>
<th>[IHE ITI TF-2a]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IHE Infrastruktur Technisches Framework, Volume 2</th>
<th>[IHE ITI TF-2b]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IHE Infrastruktur Technisches Framework, Volume 3</th>
<th>[IHE ITI TF-3]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IHE Radiology Technisches Framework, Volume 1</th>
<th>[IHE RAD TF]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verordnung über das elektronische Patientendossier (EPDV) (d)</th>
<th>[EPDV]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verordnung des EDI über das elektronische Patientendossier (EPDV-EDI) (d)</th>
<th>[EPDV-EDI]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anhang 2 der Verordnung des EDI über das elektronische Patientendossier (Zertifizierungsvoraussetzungen Gemeinschaften und Stammgemeinschaften)</th>
<th>[EPDV-TOZ]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anhang 3 der Verordnung des EDI über das elektronische Patientendossier (Metadaten) (d)</th>
<th>[EPDV-METADATA]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ergänzung 1 zum Anhang 5 der Verordnung des EDI über das elektronische Patientendossier (Nationale Anpassungen der Integrationsprofile)</th>
<th>[EPDV-NATEXT]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ergänzung 2 zum Anhang 5 der Verordnung des EDI über das elektronische Patientendossier (Nationale Integrationsprofile)</th>
<th>[EPDV-NATPROF]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anhang 8 der Verordnung des EDI über das elektronische Patientendossier (Zertifizierungsvoraussetzungen Herausgeber von Identifikationsmitteln)</th>
<th>[EPDV-AUTH]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Erläuterungen zum Entwurf der Verordnung über das elektronische Patientendossier (d)</th>
<th>[EPDV-EDI-NOTES]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Assertion Markup Language (SAML) V2.0 Technical Overview, Committee Draft 02, 25. März 2008</td>
<td>[SAML -TO]</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.pdf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS-Trust 1.4, OASIS Standard, 25. April 2012</th>
<th>[WS -TRUST]</th>
</tr>
</thead>
</table>
11 Abkürzungen

Tabelle 6: Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Programming Interfaces</td>
</tr>
<tr>
<td>ATNA</td>
<td>Audit Trail Node Authentication, IHE Profil</td>
</tr>
<tr>
<td>BAG</td>
<td>Bundesamt für Gesundheit</td>
</tr>
<tr>
<td>CDA</td>
<td>Clinical Document Architecture</td>
</tr>
<tr>
<td>CDA-CH-VACD</td>
<td>Schweizerisches Austauschformat für elmpf dossier</td>
</tr>
<tr>
<td>CT</td>
<td>Consistent Time, IHE Profil</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>DLL</td>
<td>Dynamic Link Library</td>
</tr>
<tr>
<td>ebXML</td>
<td>Electronic Business using Extensible Markup Language</td>
</tr>
<tr>
<td>EDI</td>
<td>Eidgenössisches Departement des Innern</td>
</tr>
<tr>
<td>EPD</td>
<td>Elektronische Patientendossier</td>
</tr>
<tr>
<td>EPDFV</td>
<td>Finanzhilfen für das elektronische Patientendossier</td>
</tr>
<tr>
<td>EPDG</td>
<td>Bundesgesetz über das elektronische Patientendossier</td>
</tr>
<tr>
<td>EPDV</td>
<td>Verordnung über das elektronische Patientendossier</td>
</tr>
<tr>
<td>EPDV-EDI</td>
<td>Verordnung des EDI über das elektronische Patientendossier</td>
</tr>
<tr>
<td>ESB</td>
<td>Enterprise service bus</td>
</tr>
<tr>
<td>FHIR</td>
<td>Fast Healthcare Interoperability Resources, HL7 Standard (noch in Erprobung)</td>
</tr>
<tr>
<td>GFP</td>
<td>Gesundheitsfachperson</td>
</tr>
<tr>
<td>GLN</td>
<td>Global Location Number</td>
</tr>
<tr>
<td>HL7 V3</td>
<td>Health Level 7 Version 3</td>
</tr>
<tr>
<td>HPD</td>
<td>Health Professional Directory, IHE Profil</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>IHE</td>
<td>Integrating the Healthcare Enterprise</td>
</tr>
<tr>
<td>IHE ITI</td>
<td>IHE IT Infrastructure (eine von vielen IHE Domänen)</td>
</tr>
<tr>
<td>KOS</td>
<td>Key Object Selection Document</td>
</tr>
<tr>
<td>MDHT</td>
<td>Model Driven Health Tools</td>
</tr>
<tr>
<td>MHD</td>
<td>Mobile Health Documents, IHE Profil</td>
</tr>
<tr>
<td>MIME</td>
<td>Multipurpose Internet Mail Extensions</td>
</tr>
<tr>
<td>MPI</td>
<td>Master Patient Index</td>
</tr>
<tr>
<td>MTOM</td>
<td>Message Transmission Optimization Mechanism</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>OHT</td>
<td>Open Health Tools</td>
</tr>
<tr>
<td>OID</td>
<td>Object Identifier</td>
</tr>
<tr>
<td>OOAD</td>
<td>Objekt orientierte Analyse und Design</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication System</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PDQ</td>
<td>Patient Demographics Query, IHE Profil</td>
</tr>
<tr>
<td>PDQm</td>
<td>Patient Demographics Query for Mobile, IHE Profil</td>
</tr>
<tr>
<td>PID</td>
<td>Patient Identifier</td>
</tr>
<tr>
<td>PIX</td>
<td>Patient Identifier Cross Referencing, IHE Profil</td>
</tr>
<tr>
<td>PIXm</td>
<td>Patient Identifier Cross Referencing for Mobile, IHE Profil</td>
</tr>
<tr>
<td>PPQ</td>
<td>Privacy Policy Query</td>
</tr>
<tr>
<td>PS</td>
<td>Primärsystem</td>
</tr>
<tr>
<td>IHE RAD</td>
<td>IHE Radiology Domäne</td>
</tr>
<tr>
<td>RESTful</td>
<td>Representational State Transfer API</td>
</tr>
<tr>
<td>SAML</td>
<td>Security Assertion Markup Language</td>
</tr>
<tr>
<td>SOA</td>
<td>Service orientierte Architektur</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>SSO</td>
<td>Single sign on</td>
</tr>
<tr>
<td>STS</td>
<td>Security Token Service</td>
</tr>
<tr>
<td>SVS</td>
<td>Shared Value Set, IHE Profile</td>
</tr>
<tr>
<td>TOZ</td>
<td>Technische und organisatorische Zertifizierungsvoraussetzungen für Gemeinschaften und Stammgemeinschaften (Anhang zur EPDV-EDI)</td>
</tr>
<tr>
<td>WADO</td>
<td>Web Access to DICOM Objects</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Services Description Language</td>
</tr>
<tr>
<td>XACML</td>
<td>Extensible Access Control Markup Language</td>
</tr>
<tr>
<td>XCA</td>
<td>IHE Profile for Cross-Community Access, IHE Profil</td>
</tr>
<tr>
<td>XCPD</td>
<td>IHE Profile for Cross-Community Patient Discovery, IHE Profil</td>
</tr>
<tr>
<td>XDS</td>
<td>Cross-Enterprise Document Sharing, IHE Profil</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>XOP</td>
<td>XLM-binary Optimized Packaging</td>
</tr>
<tr>
<td>XUA</td>
<td>Cross-Enterprise User Assertion, IHE Profil</td>
</tr>
<tr>
<td>ZAS</td>
<td>zentrale Ausgleichsstelle</td>
</tr>
</tbody>
</table>
11.1 Abbildungsverzeichnis

Abbildung 1: Landkarte EPD (auch als separates Dokument verfügbar) 10
Abbildung 2: Kategorien der Schnittstellen zu Primärsystemen (auch als separates Dokument verfügbar) .. 11
Abbildung 3: Übersicht Vorgehen (auch als separates Dokument verfügbar) 13
Abbildung 4: Übersichtsgrafik BAG, Electronic Patient Dossier (EPD), auch als separates Dokument verfügbar .. 19
Abbildung 5: Übersicht Prozesse (auch als separates Dokument verfügbar) 24
Abbildung 6: Sequenzdiagramm Sichere Identifikation/-Authentifizierung 27
Abbildung 7: Sequenzdiagramm Patienten-Registrierung 29
Abbildung 8: Sequenzdiagramm Patientensuche ... 31
Abbildung 9: Sequenzdiagramm Dokumentenübersicht 33
Abbildung 10: Sequenzdiagramm Notfallsszenario ... 35
Abbildung 11: Sequenzdiagramm Dokumenten Download 36
Abbildung 12: Sequenzdiagramm, Bildzugriff im EPD 37
Abbildung 13: Dokumentenpublikation .. 39
Abbildung 14: Sequenzdiagramm, Suche von Gesundheitsfachpersonen zur Erteilung von Zugriffsrechten ... 41
Abbildung 15: Sequenzdiagramm, Metadatenupdate 42
Abbildung 16: Architektur eHealth Connector, Quelle medshare.net 47
Abbildung 17: Backend-Integration ... 49
Abbildung 18: Frontend-Integration ... 50
Abbildung 19: Web-Portal-Integration .. 50

11.2 Tabellenverzeichnis

Tabelle 1: Übersicht Projektteam .. 8
Tabelle 2: Entwurf Verordnung ... 16
Tabelle 3: Anhänge Verordnung ... 16
Tabelle 4: Anwendung von Technologien im Zusammenhang mit dem ITI Framework 44
Tabelle 5: IHE Profile .. 48
Tabelle 7: Abkürzungen .. 58